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Abstract— The mathematics of connectivity elucidates pre-
dictive insights about multi-processor architectures. Space
missions, can (and should) benefit at a level where avionics
designers have the most leverage. Combining classical
results with fresh research unveils new methods for maxi-
mizing fault tolerance and throughput, and for minimizing
latency and cost. We illustrate and explain how to exploit
objective functions corresponding to feasible regions of
design and operation. The payoff: platforms that optimize
grid computing among spaceborn processors. The grid may
span hundreds – or even thousands – of nodes. To put a face
on the mathematics of connectivity, we cite key software and
hardware enablers for grids of spaceborn processors. Two
such technologies stand perched on the brink of operational
readiness: i) tunable multi-processor topologies, and ii) the
vertical cavity surface emitting laser (VCSEL). Other
enablers, such as iii) multi-processor partitioning of flight
software, await the fruits of efforts by investigators.

Reaching out to non-specialists with a background in one or
more quantitative disciplines, this is a position paper consol-
idating a host of relevant results.3 We also include an infor-
mal, example-and-diagram tutorial on multi-processor
feasible regions of design and operation. Elaborating our
exposition in greater detail, two companion contributions
appear in these conference proceedings:

– Written for engineers, computer scientists, or applied
mathematicians with a rigorous background in dependable
computing, "Spaceflight Multi-Processors with Fault Tol-
erance and Connectivity Tuned from Sparse to Dense"
crystallizes the case for software that actively embodies
the mathematics of connectivity. Exemplifying fresh
results for the latter, [34] introduces a new, efficient algo-
rithm for recognizing and labeling Hamming topologies.

– Technologists and engineers may also be interested in
"Vertical Cavity Surface Emitting Lasers for Spaceflight
Multi-Processors" [35], our broadly-scoped report on
VCSELs as enablers for tunable architectures.
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1. FROM MULTI-PROCESSORS TO THE
MATHEMATICS OF CONNECTIVITY (AND BACK)

Advances in commodity circuit and communication technol-
ogies can – and should – enable breakthroughs for fault tol-
erant, autonomous, evolvable spacecraft avionics. Especially
over the past decade:

a) Technologists from Alkalai [1] to Zorian [12] have
repeatedly underscored the case for bottom-up changes in
how we approach the design and operation of electronics
systems in general, spacecraft avionics in particular.

b) System architects have resounded a top-down vision, typ-
ically invoking mission benefits. Such voices, in fact, fre-
quently reflect technology-driven (albeit high-level)
views of what is both achievable and desirable [4], [5],
[17], [23].

An examination of the literature (e.g., [2], [25]) reveals that
both bottom-up and top-down are often weighed, or at least
co-mingled, within the same exposition. It is nevertheless
useful to contrast stock-in-trade viewpoints of (a) technolo-
gists with those of (b) system architects. Doing so offers the
benefit of a trade-based forum for approaches to spacecraft
avionics that achieve cost-effective fault tolerance, auton-
omy, and evolvability.
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Figure 1: Spaceflight grid computing by the numbers, photonics enablers. a) Multi-processor with fault tolerance,
throughput, and connectivity tuned from sparse to dense. (Client: NASA Institute for Advanced Concepts [27]).
b) Multiple vehicles, processors coupled more loosely than in (a). (Client: U.S. Missile Defense Agency [34]).

Figure 2: Manufacturing decisions by the numbers. Linear feasible region and objective, example (2), page 9. a) Geometers 
tend to interpret LP feasible regions as the intersection of half-spaces. In our case with example (2), four inequalities (4) 

through (7) in two independent variables prescribe a convex polygon, here shown in yellow, with red and blue cross-hatches.
b) If our system can indeed be modeled as an LP problem then the objective function depends linearly on the variables. For the 
example in question, a geometer would likely interpret expression (3) as a hyperplane embedded in three-dimensional space. 
Shaded in green: objective hyperplane slice constituting the functional image of the feasible region. In the general case of d 

independent variables, the corresponding feasible region is a d-dimensional polytope, and the overall LP problem spans d + 1 
dimensions. When d > 3, such a polytope and its objective function can be difficult to visualize, and to find a solution we resort 

to systematic theorems, algorithms, and computer software ([10] Chap. 4; [41]; [45] Chap. 6; [46]; [47] Chap. 7).
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Consider, for example, a recent call by the United States
Missile Defense Agency (MDA) for fault tolerant space-
flight multi-processors that support grid computing [53]:

… To space systems designers, the performance of
leading edge computing systems are often inaccessible,
since these systems do not meet the requirements for
reliable, failure-free life in a hostile ( i.e., radiation)
environment. Currently, the most powerful rad-hard
processor operates at 250 MIPS. In contrast, desktop
computers are available that greatly outpace this capa-
bility. To compensate in part for this problem, adaptive
computing approaches offer the possibility to blend
reconfigurable computing resources into general pur-
pose processors. The resulting processors can acceler-
ate special types of computation (for example, finite
impulse response filtering) by orders of magnitude. If
such processors could be chained together in different
network topologies, a rad-hard adaptive grid network
would result, compensated in performance by built-in
reconfigurable resources that can be tailored for mis-
sion-specific needs.

For growth options, a distributed parallel processing
approach is needed, since even the most powerful sin-
gle processor has a limited performance level. New
computational schemes, referred to as ‘grid comput-
ing’, appeal to a painlessly scalable network in which
computing is increased in a manner analogous to the
terrestrial power grid.

This feature, in conjunction with other conventional
fault tolerance approaches, would result in a flexible,
robust computing architecture. Therefore, innovative
solutions to distributed spacecraft processing are
sought … that combine radiation tolerance with adap-
tive computing in a network-centric scheme …

At heart, the preceding suggests dual-pronged integration of
of objectives and constraints, which may in turn be profiled
as

a) Bottom-up: rad-hard circuits, with attendant designs,
manufacturing processes, and analyses.

b) Top-down: parallel grid computing.

In either case (a) or (b), moreover, we can combine
approaches which might saliently be categorized as

i) Broad. E.g., what commercial off-the-shelf solutions
(COTS) are available to meet the goals of, or loosen con-
straints on, rad-hard net-centric grid computing?

ii) Deep. E.g., what theoretical or practical problems can we
solve, analytically or experimentally, that will enable rad-
hard net-centric grid computing?

In a top-down (b), broad (i) fashion, this paper addresses
many of the challenges posed by the MDA call for space-
flight net-centric grid computing. Complementing [34]’s
top-down (b) yet deep (ii) treatment, as well as the bottom-
up (a) yet broad (i) exposition of [35], we provide an over-
view of our work, unfold how feasible regions govern multi-
processor design and operation, and elaborate the grid com-
puting application mentioned in the Abstract.

To reinforce the MDA solicitation quoted in the lefthand col-
umn of this page, consider a recent request for proposals
issued by the United States Navy [54]; in particular, a call
for W Band avionics based on

A complete mathematical foundation … for end-to-end
operation that provides predictable, stable perfor-
mance. The performance characteristics of the whole
network must be guaranteed and stable within the con-
straints of temporal accuracy, stability and high utili-
zation. Graceful degradation is required and must be
based on a mathematical foundation … that empha-
sizes testability and predictability.

Just how are we to construe "graceful degradation" in the
excerpt above? Indeed, what could this catch phrase reason-
ably mean, in a sense of being i) intuitively understandable;
ii) amenable to rigor; iii) experimentally verifiable; and (not
least) iv) useful? Along similar lines, just how might we
ingenuously interpret MDA’s call for "processors chained
together in different network topologies"? This paper
addresses these questions by way of broad-stroke narrative,
accented with examples and diagrams.

To preview, we can (and should) synthesize topologies of
processors chained together in a fashion that satisfies the
MDA call for grid computing. Where processor-to-processor
links are relatively unchanging (think: wires) we can synthe-
size these topologies at design time. Where processors –
along with the links over which they communicate – come
and go (think: wireless), then we can embed into nodes algo-
rithms for (re-)synthesizing topologies. With a bit of care,
we can forge these algorithms to execute in a distributed
fashion, thus effecting a self-organizing, net-centric grid.

As shown in Figure 9, we can as well synthesize topologies
that meet the Navy’s requirement for graceful degradation,
serving up latency that is provably minimum, even in the
presence of faults. To this end, we would benefit from an
automated knowledge catalog of theorems and algorithms
for tuning multi-processor topologies. Recognizing the inter-
disciplinary nature of this knowledge, we will henceforth
refer to it as the mathematics of connectivity. For example,
and as Figures 7, 12, and 13 illustrate, the mathematics of
connectivity tells us how to optimally trade redundancy ver-
sus fault tolerance. Continuing the nascent work of [32], our
companion paper [34] explains how the mathematics of con-
nectivity is at once in need of analytic solutions to pressing
problems, yet ripe with solutions for practical application.

We will have attained a new level in the state-of-the-art
when software can comprehensively and reliably apply the
mathematics of connectivity to the synthesis of tunable
topologies. Figure 1 of [34] illustrates how such topologies
may be synthesized at design time, in a fashion reminiscent
of the DrawCraft project at CalTech’s Laboratory for Space-
craft and Mission Design [3]. Alternatively, the topologies
may be synthesized in realtime, via algorithms distilled from
design software, and embedded in the nodes of a multi-pro-
cessor. As Figure 1 illustrates, processors may be coupled by
way of VCSELs [35]. Or, and as Figures 3 and 4 depict, pro-
cessors may comprise a MANET, with nodes somewhat
more loosely coupled via radio-frequency (RF) channels.
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Figure 3: Wireless grid computing by the numbers. a) GNU Radio experimental platform. b) Connection Foundry™ software 
maximizes throughput by combining directed antennas with graph-theoretic factorization of cliques ([22]; [34] p. 8)

Figure 4:  Wireless throughput by the numbers, Transmission Hypercube Challenge Problem winners (cf this paper, p. 7).
a) Perfect, RF-feasible, 30-timeslot schedule for 4 × 4 grid vignetted in Figure 3, mentioned on page 8 of [34], detailed in [22].

MNYD (messages not yet delivered, in red), MDTS (messages delivered per timeslot, in blue)
b) 10 × 10 winner, 189 RF-feasible timeslots. Novel combination of FAT-trees, power adjustment, and Shannon’s Law.

c) Messages routed from FAT-tree root toward leaf nodes, 95 final timeslots of (b), aggregated on a single screen.
d) Same topology as (c), rearranged to explicate FAT-tree.
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As an experimental platform for
distributed, parallel media access
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Topology vs. Adjacency — This paper surrenders to the pop-
ularly entrenched mis-use of topology to mean "which nodes
are connected to each other" (as opposed to the more proper,
graph-theoretic "adjacency"). Tables 1 and 2 of [34] explain
this, as well as other nuances of nomenclature.

2. DESIGN AND OPERATION: FEASIBLE 
REGIONS, OBJECTIVES, AND CONSTRAINTS

2.1. Grid Computing: Loosely Coupled, Nonshared Memory

To quantify foundations of spaceflight grid computing, it
pays to qualify how processors are coupled. Processors are
tightly (or closely) coupled if they share the same physical
memory, loosely coupled if they access or exchange informa-
tion via a communication channel, which we will take as a
conduit through which information flows ([14] p. 121). Alas,
these attractively simple definitions are also oversimplistic:
distinctions among the abundant varieties of computer mem-
ories and communication channels are not always clearcut.

For example, tightly coupled processors can share instruc-
tion streams, data streams, or both instructions and data ([51]
p. 619). The processors could be asymmetric, as with, say,
the 11/782 and 8800 models in the VAX computer family
([18] Chap. 27), made by Digital Equipment Corporation
(DEC, subsequently acquired by Compaq, which then
merged with Hewlett-Packard). The presence of very tightly
coupled multiple processors might be invisible to the pro-
grammer, as is the case with throughput-enhancing multi-
cores [42], which may share cache memory that is both fast-
est, and closest to the instruction decode unit. With its
TMS320C6201 model, Texas Instruments pioneered a multi-
core digital signal processor (DSP), whose eight micro-
machine processors are dedicated to maximizing the rate at
which very long instruction words (VLIW) are retired [50].

Shifting from cache-coupled micro-machines toward the
other end of the memory hierarchy ([51] p. 134), DEC’s
VAXclusters couple processors at the level of programmer-
visible file sharing. Machines configured into the same
VAXcluster quorum also communicate directly over a chan-
nel, hardware-enabled by a so-called star-coupler. Inciden-
tally, DEC’s legacy use of quorum to designate an ensemble
of computers which cooperate (hence communicate) coin-
cides with Moore and Shannon’s application of the identical
terminology in 1956 [40]. Continuing this tradition, we
accord quorum preference over swarm or mesh, and on par
with grid.

The initial billing of VAXclusters as tightly coupled [19]
blurred considerably when, in 1986, DEC introduced local
area network (LAN) VAXclusters [6], feasibility of which
hinged largely on ethernet channels. Today, LAN-based file
sharing is commonplace, even with, say, heterogeneous
mixes of machines running Linux and Microsoft Windows
operating systems. The advent of pervasive, high-speed
wired and wireless channels has given rise to the sharing of
files over virtual, private networks (VPNs). Contemporary
organizations rely on VPNs to consolidate their daily busi-
ness despite physically distributed locations.

The preceding examples spur us to wonder: just where, in
the gamut from micro-machines to VPNs, does the coupling
of processors cross from tight to loose? For our answer we
turn to the theory and practice of dependable computing: a
processor is loosely coupled if its faulty behavior can be iso-
lated from the remainder of the quorum by healthy proces-
sors disabling or severing point-to-point-channels. Our
meaning of loose coupling thus implies nonshared memory.

Table 1 of the mathematically-oriented companion [34] to
this paper spells out rigorous prescriptions for terms such as
fault, fault model, fault tolerance, and quorum. In keeping
with our informal emphasis, we will adopt complementary
terminology generally attributed to LaPrie [36], and subse-
quently elaborated by a multitude of researchers:

a) A system (think: component, node, processor, or even
software) fails when the service it provides differs from
the service is was designed to provide.

b) A system is in error when its state is other than that
intended by the design. Errors lead to failures, but not all
errors manifest as failures.

c) A fault is a condition which may lead to an error. Faults
which have not (yet) caused an error are deemed latent.
Espousing an alternative, Murphy and Hayes [42] instead
define a fault as the difference between a system that is
failing, and one which is healthy (see next item (d)).

d) A system that has not failed is healthy. However, (and
this is a quirk of the literature) we frequently model as
healthy a system which is either fault-free or whose
faults are not yet manifested. The former rarely (if ever)
exists. Perhaps surprisingly, such cavalier use of healthy
and faulty is often both useful and devoid of confusion.

Definitions (a) through (d) are both causal and recursive.
However, that the extent to which (a) is practical depends on

i) How well we have operationally specified what our sys-
tem is supposed to do

ii) Our ability to effectively check that our system in fact
does what it is supposed to do (verification [44])

iii) The extent to which our specifications pinpoint what we
really want the system to do (validation [44])

Verifiable theories of fault tolerance (including that advo-
cated in this paper) tend to be founded on localization of
errors and faults. However, point (i) above suggests that
specification faults may root nonlocal errors. This is espe-
cially so with software, which bears much of the brunt of the
complexities of dynamic systems, e.g., onboard flight con-
trol. Herein alternative definition (c), independently
advanced by LaForge and Nikora for instrumenting Deep
Space One flight software [27], could prove fruitful.
Requirements 13 and 16 of [23], along with Section 1 of
[35], elaborate issues related to software fault tolerance and
multi-processors.

As Figure 1 suggests, it is in above-described context of
loosely coupled multi-processors that fault tolerance serves
as our foundation for quantifying grid computing, space-
flight grid computing in particular. Loosely coupled multi-
processors set the stage for optimizing fault tolerance – plus
other objectives – as Sections 2.2 and 2.3 explain.
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Figure 5: Microelectronics by the numbers. Convex (but nonlinear) feasible region of design. Shown in blue-gray: the 
intersection of three constraints governing wire geometries in very large scale integrated circuits (VLSI). For more than two 
decades, J. D. Meindl has spearheaded work such as this [38]. The present paper espouses analogous feasible regions for the 

design and operation of multi-processor grid computing. Reprinted with permission from [55] © 2000 IEEE.

Figure 6: Robust feedback control by the numbers. Non-convex, nonlinear feasible region of design and operation. Outer sleeve 
in yellow: intersection of three constraints governing compensators, robust to uncertainties in transfer function parameters. The 

complete sleeve is three-dimensional, and extends above and beneath the slice shown here for a particular frequency [13].

Minkowski quotient
 feasible region for

plant transfer function
≡

/

Boundary of 
Region inside satisfies

frequency shape constraints

C –
indep shape

Boundary of 
Region outside satisfies

peak gain constraints

C +
indep shape

Kharitonov rectangles  
of plant transfer function

numerator and denominator

A , B

Kharitonov rectangle, plant
transfer function numerator

Kharitonov rectangle, plant
transfer function denominator

Intersection of
   Minkowski sum
     inequalities with
        respect to
               Minkowski
                    quotient – – 1P 

C = indep shape C   C –  +
indep shape indep shape∩

Shaded region surrounding – – 1P :

for independent



7

2.2. Feasible Regions of Design and Operation Facilitate
Models That Are as Simple as Possible, But No Simpler

Section 1 of [35] recounts how and why multi-processor
projects to date fall elusively short of commodity status, on
par with uni-processor successes, such as Intel's Pentium
family. Continuing from Section 2.1 of this paper, we
advance commodity net-centric, multi-processors, tuned to

maximize
i) tolerance to faults (including radiation-induced faults)
ii) throughput (say, aggregate channel capacity)
minimize

iii) latency (measured, say, by topology diameter)
iv) cost (including power, mass, and dollars)

Fault tolerance (i) is by no means our only figure of merit,
but it is our most fundamental one. Fault tolerance also
serves as a springboard for illustrating feasible regions of
design and operation. To get the ball rolling, let us list some
examples of what we do not mean by multi-processors by the
numbers:

a) Maximizing instruction throughput by sizing memory
hierarchy layers (e.g., [51] Sec. 4.1), such as tape, mag-
netic or solid-state disks, and high-speed cache

b) Maximizing aggregate processor throughput by allocat-
ing instructions to micro-machine cores, via (say) combi-
nations of parallelization and pipelining (e.g., [50])

Topics such as (a) and (b) above are instead the proper prov-
ince of analysis of systems comprising a single processor, or
processors which are tightly coupled. Further, we are not
writing about …

c) … how to implement spaceflight grid computing with
manufacturing-level fidelity. Without question a serious
effort to realize the possibilities predicted by the mathe-
matics of connectivity hinges on details, such as coordi-
nating English versus metric units between engineering
teams (cf. [23] Req 14). That said, and recalling the
DrawCraft project mentioned at the bottom of page 3,
designing and operating multi-processors by the numbers
not only dovetails with software that embodies theorems
and algorithms from the mathematics of connectivity, but
is very compatible with detailed computer simulation.

Point (c) accentuates the difference between multi-processor
by the numbers, and prevailing design habits. The latter, we
submit, overemphasize complex calculations and volumi-
nous, repeated simulations – at the expense of analytic rea-
soning. Section 1.1 of [34] underscores this distinction,
which we take to the opportunity to amplify here.

Objectives versus Constraints — In 2004, the Air Force
Research Laboratory (AFRL) challenged five contractors,
including The Right Stuff of Tahoe, to devise a comprehen-
sive approach for software defined radios (SDRs) that con-
serve RF spectrum. Page 8 of [34] explicates the
corresponding Transmission Hypercube Barebones Prob-
lem, requirements for which entail balancing mobile ad hoc
network (MANET) constraints against objectives [22]. Fig-
ures 3 and 4 provide a glimpse of how this challenge exposes
what we mean by multi-processors by the numbers.

For example, we may pick fault tolerance as our objective to
maximize, with limits on any combination of (ii), (iii), and
through (iv) in the lefthand column of this page serving as
constraints on the feasible region. More generally, our objec-
tive may be any one of (i) through (iv), or perhaps even a
function of (i) through (iv). To illustrate this approach to
optimization, let us briefly review its most popular rendition.

Fly-By Tour of Linear Programming — To mathematicians,
a mapping is linear if it is additive and scalar multiplicative.
For our purposes, an optimization problem is linear if its
constraints and objective are flat; we deliberately forego a
rigorous definition of flat. Optimization on feasible regions
with flat sides continues to be billed by its historical moni-
ker: linear programming, LP for short [41]. Linear program-
ming refers to a mathematical formulation; it is not to be
confused with the programming of computers, even though
practical solution to contemporary LP problems is effected
by programming algorithms on computers. In 1945, Nobel
Laureate G. J. Stigler [15] presented what is often heralded
as the LP progenitor, the Diet Problem [47], [52]:

Minimize the annual cost of one person’s diet, subject to 
constraints on minimum caloric intake and nutrients (1)

Expression (1) falls short of explicating the cost and nutri-
tional value of candidate foods, as well as the minimum
dietary requirements for nutrients. Stigler distilled these par-
ticulars into nine linear inequalities in 77 unknowns. In his
biographical sketch of Stigler [15], M. Friedman – himself a
Nobel Laureate in Economics – writes:

"The Cost of Subsistence" [Stigler’s 1945 article] …
starts, "Elaborate investigations have been made of the
adequacy of diets at various income levels, and a con-
siderable number of 'low-cost,' 'moderate,' and 'expen-
sive' diets have been recommended to consumers. Yet,
so far as I know, no one has determined the minimum
cost of obtaining the amounts of calories, proteins,
minerals, and vitamins which these studies accept as
adequate or optimum." George then set himself to
determine the minimum cost diet, in the process pro-
ducing one of the earliest formulations of a linear pro-
gramming problem in economics, for which he found
an approximate solution, explaining that "there does
not appear to be any direct method of finding the mini-
mum of a linear function subject to linear constraints."
Two years later [in 1947] George Dantzig provided
such a direct method, the simplex method, now widely
used in many economic and industrial applications.

In 1947, J. Laderman’s ten-person team at the National
Bureau of Standards expended 120 man-hours with desk cal-
culators, applying G. B. Dantzig’s simplex algorithm to the
Diet Problem. The result: Stigler’s ad hoc approximate mini-
mum of $39.93 (in 1945 dollars) was only 24 cents more
than the true minimum of $39.69 [37].

To get a solid feel for feasible regions and objective func-
tions, let us set up and solve a simple LP problem. Rather
than engage the nine inequalities and 77 unknowns of Sti-
gler’s seminal Diet Problem, our example spans five ine-
qualities in two unknowns. As Figure 2 illustrates, our
simplified treatment makes it relatively easy to visualize the
geometry of the feasible region.
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Figure 7: Probabilistic feasible (and forbidden) regions of multi-processor diagnosability and connectedness.
a) and b): simulations of from 21 to 357 nodes refine and expand the analytic region conservatively predicted by [30], depicted

in (c). Here, faulty nodes are distributed with coin flipping probability 75%. The expected fraction of healthy nodes is 25%, 
with 22% of all nodes healthy and connected into the same quorum. These results also hold almost surely ([34] pp. 7, 9, 19).

The number of channels per node measures cost. The false positive probability measures the quality of localized tests.

Figure 8: Cross strapping by the numbers. How to synthesize a) topology, b) MTAD digraph, and c) optimum test schedule.
Also known as (n, h) local sparing, the number of nominal nodes equals n, with h the ratioed node or channel redundancy. 

Figure 9: Graceful degradation of a complete Hamming topology, the nine-node two-dimensional ternary K-cube K3
2.

The mathematics of connectivity brackets the latency with respect to best and worst-case fault patterns, such that all healthy 
nodes are connected. By actively embodying the underlying theorems and algorithms, software, such as The Right Stuff of 

Tahoe’s Connection Foundry™, optimizes multi-processor topologies at either design time or in operation.
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LP Setup — Suppose that we manage an avionics packaging
shop which makes and sells vertical cavity surface emitting
laser (VCSEL) arrays and multi-chip modules (MCMs).
Business is good, and we can readily sell all the parts we can
package. Customers in the aerospace supply chain willingly
purchase our VCSEL arrays for $7 each, our MCMs at $5
apiece. Our manufacturing line can devote up to 100 hours
per week surface mounting and soldering parts, as much as
240 hours per week assembling and testing them. Because
our accountant carefully monitors our fabrication efficiency,
we know that to package each VCSEL array takes two hours
of surface mount and soldering, four hours for assembly and
test. On top of one hour of surface mount and soldering, to
complete an MCM takes three hours of assembly and test.
Subject to these manufacturing constraints, we have the lati-
tude of choosing the quantity of VCSEL arrays and MCM’s
that we produce each week. Restated as an LP problem:

Subject to manufacturing constraints, what production mix 
of VCSEL arrays and MCM’s maximizes revenue? (2)

Let xVCSEL be the number of VCSEL arrays we package in
any given week, and denote by xMCM the number of MCM’s
we turn out over the same period. Our revenue objective
function xrevenue is therefore just xVCSEL, weighted by the
selling price for a VCSEL array, plus xMCM, weighted by the
selling price of an MCM. Formulating this relation as a (lin-
ear) objective function:

xrevenue = $7⋅xVCSEL+ $5⋅xMCM (3)

Re-casting our manufacturing constraints:

(4 hrs / VCSEL array)⋅xVCSEL
+ (3 hrs / MCM)⋅xMCMs ≤ 240 hrs assembly & test (4)

(2 hrs / VCSEL array)⋅xVCSEL + (1 hr / MCM)⋅xMCMs
≤ 100 hrs surface mount & soldering (5)

xVCSEL ≥ 0 (6)
xMCMs ≥ 0 (7)

Figure 2a illustrates the bounded, two-dimensional feasible
region prescribed by linear inequalities (4) and (5), as well as
nonnegativity constraints (6) and (7). Mindful of our objec-
tive function (3), we see that our LP problem in fact spans
three dimensions. Figure 2b depicts how (3) geometrically
defines a hyperplane in a 3-D space, with xVCSEL along one
axis, xVCSEL along another, and xrevenue along the third. In
the precise language of mathematics, the part of xrevenue over
which we seek a maximum is the image of the feasible
region with respect to the linear mapping (3). 

LP Solution — Techniques abound for solving LP problems
whose complexity substantially outstrips that expressed by
(3) through (7). Figure 2 lists references which serve as but a
starting probe for the voluminous literature on the subject.
For example, and invoking Dantzig’s simplex method men-
tioned on page 7 of this paper, we need only check the objec-
tive function at the vertices, or extreme points, of the feasible
region ([45] Chap. 6). There are but four extreme points on
the boundary of the feasible region prescribed by (4) through
(7), with the maximum value of xrevenue = $410 attained
when xMCMs = 30 and xVCSEL = 40. Figure 2b illustrates this
result, the unique mix of VCSEL arrays and MCM’s that
maximizes our weekly revenue.

Benefits of Linear Programming — LP courses are standard
fare at business schools, and with good reason. While its
demonstrated power has yet to reach a maximum, LP is argu-
ably the most successful weapon in the by-the-numbers
armamentarium. The advantages of LP emerge with striking
clarity when we examine its use by commercial airlines.

Introduced in the mid-1980’s, the LP-based Station Man-
power Planning System was estimated to have saved United
Airlines $6M annually ([47] p. 314). American Airlines’
TRIP (Trip Re-evaluation and Improvement Program), a per-
sonnel assignment LP optimizer evolved since the 1970’s, is
claimed to have saved the company $20M per year. As an
additional indicator of success, by the 1990’s, American had
sold TRIP to 10 other airlines and one railroad ([47] p. 297).
In the 1990’s, Delta Airlines began solving an LP model on a
daily basis: 40,000 constraints on 60,000 variables reflecting
aircraft availability and capacity, arrival and departure
schedules, maintenance requirements, and passenger reser-
vations. The objective: minimize operating costs and lost
passenger revenue. Industrial engineers peg this model,
called Coldstart, as saving Delta $100M per year, when
compared with business before Coldstart ([47] p. 345).

The Curse of Dimensionality — Returning to the 2004
Transmission Hypercube workshop mentioned on page 7,
the LP success of United, American, and Delta Airlines may
have spurred Engenium Technologies President M. Pascale
to propose naïve, if well-intentioned, MANET media access
control (MAC), with two properties of note:

a) Ultra-fine fidelity that attempts, in realtime, to adjust
tradeoffs among, for example, transmit and receive
power, distance, RF path loss, bit error rate, routing
choices, and throughput … all globally captured and opti-
mized on a single computing platform. For a MANET of
even modest proportions, say, 36 nodes, this means set-
ting up and solving, on a single MAC master node, an LP
problem comprising more than 300,000 variables.

b) Tree topology, with LP-solver embedded in the MAC
master, also the root of the tree. The MAC master must
re-run its LP-solver as nodes enter and leave the quorum,
or as the distance between nodes changes, or as other
environmental conditions (e.g., ambient noise) change.
To specialists in both wireless networks and the domain
of fault tolerance, such occurrences are known as recon-
figuration events. Page 12 of [34] provides a starting
point for more information about tree topologies.

Properties (a) and (b) epitomize how not to go about design-
ing or operating multi-processors by the numbers. Though
perhaps daunted, we should not be surprised at the moribund
confusion arising from a model which suppresses the domi-
nance of first-order effects. A 300,000-plus variable linear
program on just 36 nodes underscores how according equal
import to a maximum number of conceivable variables is not
only unscalable, but intractable when the count of nodes is –
by grid computing standards – modest. Engenium Technolo-
gies never did present a solution (even if suboptimal) to the
nominal 10 × 10 Transmission Hypercube Barebones chal-
lenge ([34] p. 8). By contrast, and as Figure 4 details, The
Right Stuff of Tahoe’s FAT-tree approach outstripped all
other Transmission Hypercube companies by 231%.
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Figure 10: Concepts and trends, feasible regions of multi-processor design and operation, sliced along each of three dimensions.

Figure 11: Cross strapping, also known as local sparing, revisited. a) Switching and routing reflecting chip-level layout, in 
somewhat finer detail than that depicted by Figure 8. b) Four-variate feasible region of worst-case tolerance (cf. Figure 7b) to 
faulty nodes, broken wires, and switches stuck open and closed. In contrast with the probabilistic cases depicted in Figure 12, 

the worst case constraints (i.e., configurability = 1, cf. Figure 7a) are linear, no matter what subset of four fault types we 
consider. Original results detailed in [29]. See Table 2 of [34] for precise meaning of order-of-magnitude Θ-notation.
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Evocative of the 120-man-hours to solve Stigler’s Diet Prob-
lem, property (a) on page 9 draws attention to the computa-
tional cost of LP problems with a large number of variables.
Dantzig’s simplex algorithm, along with other techniques
which have been advocated, may execute in time exponen-
tial in the number of variables. As Figure 2 depicts, the feasi-
ble region occupies a volume whose geometric count of
dimensions equals the number of variables; such exponential
running time is therefore known as the curse of dimensional-
ity. This poses difficulties even when we invoke the power of
LP software and high-speed computers.

Computer scientists consider an algorithm executing on a
single processor to be efficient if it completes in time that is
polynomial in the size of its input [9]. The simplex algorithm
does not meet this theoretical standard, even though practical
problems against which it is pitted are frequently sufficiently
well-behaved to engender acceptable runtime. It was for
some time not known whether there could be a polynomial
time algorithm to solve LP; this was settled in the affirmative
when, in 1984 ([47] p. 289) N. Karmarker introduced his
elliptical algorithm. Alas, the elliptical algorithm has yet to
attain widespread adoption. The simplex algorithm remains
the pervasive LP method of choice for optimizing software,
and is even built into Microsoft Excel [39].

Distributed versus Centralized Quorum Management —
Properties (a) and (b) of the Engenium proposal suffer the
tyranny of centralization. Not only is a tree zero-fault toler-
ant (killing any non-leaf node breaks the quorum apart), but
embedding a mission-critical LP-solver into the root of the
tree invites systemwide failure, perhaps by hostile targeting
(cf. [24] p. 31). Nevertheless, customers to whom we deliver
tunable multi-processor topologies should, we submit, enjoy
the option of trading zero fault tolerance against other priori-
ties (e.g., a minimum Euclidean spanning tree, or MEST,
connects a quorum using least power; cf. Figure 16). Such
was the case for our winning FAT-tree solution to the Trans-
mission Hypercube Barebones challenge, wherein AFRL
valued workload throughput at the expense of fault tolerance
or economy of power (Figure 4b, c, and d; with respect to
Figures 3 and 4a, note that our constant power solution is not
based on a tree; also see [34] Sec. 2.1). Perhaps most telling,
neither

a) the complexity (300,000+ variables on 36 nodes)
nor b) the centralized MAC / LP-solver

of the Engenium proposal is warranted, as we proceed to
explain.

In lieu of (a), we re-iterate our list of four, first enumerated at
the top of page 7: i) fault tolerance; ii) throughput;
iii) latency; and iv) cost. To ice the case against (a), and in
addition to the curse of dimensionality: multi-processors by
the numbers is highly nonlinear, even when we restrict feasi-
ble regions to our list of four. Figure 14 illustrates how this is
so, with plots of instances to which we have applied results
detailed in [34]. Therefore, stock-in-trade linear program-
ming approaches (including algorithms for explicating feasi-
ble regions as the intersection of half-spaces; [10] Sec. 4.2)
are in general not appropriate for optimizing multi-processor
grid computing, spaceflight grid computing in particular.

With respect to property (b), and as remarked on page 3,
proper application of the mathematics of connectivity entails
converting theorems to algorithms, embodying algorithms as
part of design software (cf. Figures 3 and 4; [34] Fig. 1), and
re-casting the algorithms into a distributed, parallel form [8]
that can be embedded into operational nodes (cf. GNU
Radio, Figure 3a), and which maximizes global benefit
based on local actions. The latter is at odds with properties
(a) and (b), which, are distinctly not amenable to distributed,
parallel coordination of (re)configuration events.

For example, in bringing a quorum to life, how are nodes to
decide who is master, and who is not? Generalizing the case
of a single node joining a quorum of many nodes, how to
merge quorums which come into proximity with each other?
Who takes over as MAC master if the current MAC master
fails? How is unwanted MAC takeover stymied when the
current MAC master is healthy? While the Engenium pro-
posal falls short of addressing these questions, a starting
point for answers can be found in Digital Equipment Corpo-
ration’s legacy of Vaxclusters ([19]; also see page 5 of this
paper). Bolstering and complementing this foundation: syn-
thesis of topologies – either at design time or during multi-
processor operation – using classical and contemporary theo-
rems and algorithms from the theory of graphs, especially
Hamming graphs ([20], [34] Sec. 2). Figure 9 illustrates how
Hamming topologies promote graceful degradation, as
described by the Navy solicitation quoted on page 3.

While we can rely on DEC’s Vaxclusters as a springboard for
contemporary MANET media access control (MAC), we
should not mimic DEC’s brandishing of a 262-dimensional
space of boot-time adjustable parameters for the VMS oper-
ating system ([18] Apx C.1.16). The inadvertent but harmful
upshot of according ill-specified import to so many parame-
ters was to stunt attempts at rigorously and predictively mod-
elling the salient behavior of the operating system. With the
benefit of hindsight, we now know better. If 262 boot-time
adjustable parameters are too many for VMS, then 300,000-
plus MAC variables are certainly too many for a realtime
MANET. Such bloated dimensionality defeats criteria, first
advanced on page 3 of this paper, for a multi-processor
model that is intuitively understandable, amenable to rigor,
experimentally verifiable, and useful. Our model should
keep things, in the reputed words of A. Einstein, "as simple
as possible, but no simpler" [7]. To this end, we proffer the
list of four enumerated at the top of page 7.

In summary, kith and kin to properties (a) and (b) run con-
trary to simple-as-possible, useful predictions of the salient
behavior of multi-processors. The attendant realtime imple-
mentations are both unscalable and intractable, even when
the count of nodes is modest. Systems with properties (a)
and (b) suffer the tyranny of centralization, with consequen-
tial penalties assessed against fault tolerance and throughput.
Moreover, an LP formulation neglects the glaring fact that
multi-processor optimization is highly nonlinear. All this
brings us to a central posit of this paper: as important as it is
to accurately and efficiently optimize objective functions
with respect to a given feasible region, it is even more impor-
tant to determine feasible regions of multi-processor design
and operation in the first place.
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Figure 12: Probabilistic feasible regions of redundancy (cf. Figure 7c) for cross strapping, also known as local sparing.
a) Univariate ratioed redundancy h, in the presence of faulty nodes, switches incorporated into nodes or external to node, but 
(cf. Figure 11) switch failures negligible. b) Bivariate feasible (h, k) region: faulty nodes with switches (cf. Figure 11) stuck 

closed. The latter pushes the (minimum ratioed) area redundancy from Θ(log n), in the case (a) of faulty nodes only, to
Θ(log n)2. c) Trivariate model. Same as (b), only with switches stuck open and stuck closed. The conflicting nature of the two 
types of switch failures pushes the area redundancy from Θ(log n)2, in case (c), to Θ(n log n). As detailed in [26], these results 
quantify how switches that are separate from processors, but which are stuck closed, can constitute the most costly type of fault. 
Bottom line: we can more readily and predictably optimize grid computing when (cf. Section 2.1) nodes are loosely coupled.
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From Diets to Proteins — With judicious choice of model-
ing parameters, feasible regions spanning even a handful of
dimensions serve to illuminate what man or Nature can
build. As an instance of the latter, G. N. Ramachandran
spearheaded the formulation and use of plots that distinguish
forbidden versus feasible structures of proteins, such as the
helices of hair keratin and blood hemoglobin [11].

From Microelectronics, to Robust Control, to Multi-Proces-
sor Mutual Test and Diagnosis (MTAD) — Somewhat closer
to this paper’s topic of multi-processors, Figure 5 depicts but
one example from the body of work by integrated circuit pio-
neer J. D. Meindl. Meindl’s feasible regions explicate the
range of interactions among increasingly growing numbers
of integrated microelectronic devices, simultaneously con-
strained by the physics of increasingly shrinking geometries.
Meindl’s contributions have inspired the first author of this
paper to discover and report feasible regions (often nonlin-
ear) that elucidate macro-architectural limits of loosely-cou-
pled systems (cf. Section 2.1). For example, Figure 6
illustrates the output of an algorithm, developed in collabo-
ration with M. S. Fadali [13], that computes feasible regions
of robust compensation; this enables the fabrication of actua-
tors that properly maintain control (think: spacecraft atti-
tude) despite uncertainties about the values of system
parameters. As yet another example, the feasible regions and
mechanisms of Figures 7 and 8 illustrate mutual test and
diagnosis of faults among the nodes of a multi-processor
[33]. Such macro-architectural feasible regions fairly sam-
ple what we mean by multi-processors by the numbers.

There are marked differences between feasible regions gov-
erning microelectronics and those which characterize multi-
processors. Among other things, distributed, parallel quorum
diagnosis and configuration is paramount to our most funda-
mental multi-processor figure of merit: fault tolerance.

2.3. Emblematic of Feasible Regions of Fault Tolerance:
Local Sparing, Also Known at NASA as ‘Cross Strapping’

Fault Tolerance Should Not Be (But Often Is) Confused with
Redundancy — Rather, fault tolerance is a desired quantifi-
able property whose cost can be measured in terms of redun-
dancy. As Figure 10 illustrates, succinct models of fault
tolerant multi-processors span three dimensions:

a) Configurability. The probability that a quorum exists.
The exact definition varies with the application. In
general, a quorum comprises trustable, healthy pro-
cessors that can communicate via some (perhaps indi-
rect) path. Often, but not always (cf. Figure 7) quorum
criteria stipulate that all healthy nodes be included.
Quorum topology may be highly constrained, as, for
example, with VLSI arrays (cf. Figures 8 and 11).

b) Fractional fault tolerance. The maximum proportion
of all nodes that can be faulty, such that, with proba-
bility at least the configurability, a quorum exists.

c) Redundancy. Resources required to sustain a quorum,
up to the rated fault tolerance. For loosely-coupled
multi-processors, we measure redundancy in terms of
the number of channels, perhaps ratioed by dividing
by the number of nodes.

The mathematically-oriented companion [34] to this paper
treats (a) through (c) in more detail. To keep things at the
level of broad strokes, we continue our narrative description,
accented with examples and diagrams.

Example: Four-Variate Feasible Region of Fault Tolerance
— Configurability (a) is often held fixed, with fault toler-
ance or redundancy plotted against the quorum order, or
number of nodes. For example, the worst case corresponds
to 100% configurability. Fortifying this notion, Figure 11a
spells out switching and routing that implements local spar-
ing, as presented in Figure 8. Arguably underutilized, local
sparing is simple, yet remarkably effective over a broad
range of fault tolerant applications. Figure 11b plots four-
dimensional feasible regions of worst-case fault tolerance
delivered by local sparing. Although illustrated here for the
case of two-dimensional arrays, similar results pertain for
local sparing of any topology [28].

Examples: Probabilistic Feasible Regions of Redundancy —
In the worst case, both the fault tolerance (Figure 11b) and
redundancy of local sparing are independent of the quorum
order n. In consequence, local sparing guarantees fault toler-
ance that is usually much less than what we could achieve. In
fact, no amount of locally spared redundancy assures worst-
case fault tolerance in proportion to the quorum order n.
However, the situation brightens substantially when we
expand our analysis to probabilistic criteria. Figures 12a
through 12c quantify the good news by way of a rich fault
model that spans not just faulty nodes, but (in the case of
VLSI implementations) switches stuck open and closed.

2.4 Feasible Regions of Design and Operation:
Keys to Multi-Processors by the Numbers

As Figure 1 illustrates, we prefer loosely coupled nodes as
our foundation for quantifiably predictive grid computing.
Sections 2.1 through 2.3 unfold how this simple yet powerful
model sets the stage for optimizing i) fault tolerance (e.g.,
Figures 7, 8, 9, 11b); ii) throughput (e.g., Figures 3 and 4);
iii) latency (e.g., Figure 9); and iv) cost (e.g., Figure 12).

When we write multi-processors by the numbers, we do not
mean to suggest certain recognized, venerable pursuits of
computer architects, such as sizing memory hierarchies of
uni-processors, or applying pipeline techniques with the
objective of maximizing uni-processor throughput. Rather,
and standing on the shoulders of optimization pioneers,
multi-processors by the numbers emphasizes insights
afforded by feasible regions spanning as few dimensions as
possible. The prime benefit of such feasible regions: best or
near-best topologies, synthesized at either design time, or in
realtime, while the multi-processor is in operation. Although
these feasible regions may be conveniently linear (e.g., Fig-
ures 2 and 11b), we should anticipate constraints and objec-
tives which are curved (e.g., Figures 5, 12a), and perhaps
even non-convex (e.g., Figures 6, 7, 12b; even 12c, with
respect to quorum order n). Moreover, designing and operat-
ing multi-processors by the numbers not only dovetails with
software that embodies theorems and algorithms from the
mathematics of connectivity, but (cf. Figure 7) is very com-
patible with detailed computer simulation.
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Figure 13: Grid computing by the numbers. Limiting curves in (a) through (c) explicate the boundaries
of feasible regions governing channel cost, fault tolerance, throughput, latency, and the total number of nodes.

Details in the mathematically-oriented companion [34] to this paper.
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c) Performability: Fault Tolerance
Combined with Latency — Let the
amortized channel cost scale
logarithmically, according to the green
curve in (b) above ([34] Apx A.4).
This enables the minimum
connectivity for probabilistically
tolerating a constant fraction p of
faults. Having paid this price, we seek
to maximize worst-case fault tolerance
and throughput, while simultaneously
minimizing latency. The latter is
bounded from above by the red curve
plotted on the right, and from below
by the green. The respective bounds
are attained by Harary-Hayes
topologies (bloated latency) and by K-
cube Hamming topologies (tight, low
latency; [34] Sec. 2.2, Apx A.2).
Compare with Figures 9 and 14.

a) Channel Cost of Fault Tolerance,
Connectivity, and Throughput —
Topologies optimizing fault tolerance
and throughput enjoy many disjoint paths
between nodes. The maximum number
of disjoint paths between two nodes, say
s and t, is the s-t connectivity. The
connectivity of a topology is the overall
minimum s-t connectivity. Connectivity
and throughput are often identical. The
worst-case fault tolerance is one less than
the connectivity. Hence, fault tolerance,
connectivity, and throughput are
synergistic. At right: curves delimiting
the bottom of feasible regions of channel
cost, three different criteria for quorum
configurability ([34] pp. 5, 7).

b) Amortized Channel Cost — Feasible
regions of (a), replotted to reveal the count
of channels per node. At n = 1000, for
example, the green curve tells us that we
pay 60% (6 versus 10 channels) for
probabilistic tolerance to five times as
many faults (100 versus 20) as in the worst
case. The probabilistic cost drops even
further if we permit wide disparities in the
per-node count of channels. Caution: while
we can optimize worst-case fault tolerance
and throughput within probabilistically
well-behaved topologies ([34] Apx A.4), in
many circumstances there is no substitute
for dense connectivity. We are likely to find
our throughput and latency hard-pressed in
the face of, for example, channel starvation
or intelligent hostilities.
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3. GRID COMPUTING BY THE NUMBERS:
SOFTWARE AND HARDWARE ENABLERS

3.1. From MANET FAT-Trees and Local Sparing to Grids

Section 2’s exposition of fault tolerance, throughput, and
redundancy serves as segue for grid computing by the num-
bers. As mentioned on page 7, our Transmission Hypercube
MANET FAT-tree solution arose in response to a benchmark
problem that is highly structured, in terms of both geometry
and workload (Figures 3 and 4; [34] p. 8). Similarly, a pre-
ponderance of challenges for fault tolerant integrated circuits
are very constrained, either by physical considerations
(cf. Figure 5), or by target topology (e.g., arrays, Figures 11
and 12). Grid computing is attractive because of the extent to
which it loosens such shackles.

To reinforce the MDA solicitation quoted on page 3: instead
of targeting a narrow workload or application-oriented topol-
ogy, grid computing seeks to endow an ensemble of proces-
sors with a margin of aggregate compute power, in excess of
the bare minimum required to accomplish the mission.
Either at design time or in operation, tuning algorithms [34]
synthesize topologies that give healthy nodes the best chance
of communicating, in a fashion that indeed gets the job done.

It is beyond our scope to venture how application software
can fully exploit a multi-processor grid. Three contributions
to parallel processing underscore the importance and diffi-
culty of bringing such as-yet immature work to bear. Chala-
sani and Thulasiraman develop and analyze parallel
algorithms for optimization [8]. Y. Shi [49] establishes the
equivalence of two erstwhile different formulae, attributed to
Amdahl resp. Gustafson, for predicting execution time
speedup. More recently, T. G. Robertazzi [48] promotes
divisible load theory. To this end, our quorum model hinges
on applications that change, (re)negotiate, or influence
objectives or constraints derived from the four criteria enun-
ciated the top of page 7: i) fault tolerance; ii) throughput;
iii) latency; and iv) cost. As to how to achieve these in prac-
tice, Figure 5 suggests the capstone posit of this paper:

As concentrated abundances of photolithographically 
fabricated transistors have enabled microelectronic

integration, concentrated abundances of
wireless channels enable grid computing (8)

For spaceborn multi-processors, such as those evoked by
Figure 1, pencil beams of electromagnetic radiation provide
a compelling, low-interference means of concentrating abun-
dances of communication channels. Accordingly, the device-
oriented companion [35] to this paper examines possibilities
for innovatively leveraging the mathematics of connectivity
using a technology whose time has arrived: the VCSEL.

3.2. From Fault Tolerance to Throughput, Latency, and Cost

By no means do the local sparing examples of Section 2.3
and Figures 11 and 12 constitute the final word on feasible
regions of fault tolerance. To the contrary, the mathematics
of connectivity is just getting underway, and undiscovered
delights outnumber known results.

For example, blue and red curves in Figures 13a and b depict
feasible regions of scalability, as bounded by the Harary-
Hayes optimum tradeoff between worst-case fault tolerance
and minimum (unweighted) channel cost ([34] Eqn (3)). By
contrast, the green curves in Figures 13a and b delineate fea-
sible regions reflecting the minimum channel cost of proba-
bilistic fault tolerance ([34] Thm 3). While these results are
encouraging, it remains to generalize them to the case of
nonuniform channel cost.

Concerning the important (and formidable) objective of min-
imum latency, Figure 13c crystallizes the tight-to-loose
range of topologies sporting identical connectivity and fault
tolerance, and with the same number of channels for each of
n nodes. It therefore behooves us to intelligently choose
topologies, such as clique-based K-cubes ([34] Sec. 2.3),
which feature many short disjoint paths between nodes. This
as opposed to topologies, such as those attributed to Harary
and Hayes, which contain many not-so-short disjoint paths.
Of course, exactly what constitutes an intelligent choice
depends on our particular objectives and constraints. Cus-
tomers, mission directors, or military commanders to whom
we deliver multi-processor topologies should therefore enjoy
the option of selecting from fault tolerance and connectivity
tuned from sparse to dense [34].

3.3. Performability: From Theorems, to Algorithms,
to Software for Multi-Processor Design and Operation

Nabli and Sericola employ performability to designate com-
binations of fault tolerance and performance [43]. If we
allow that performance encompasses throughput, latency,
and cost, then – and as pointed out on pages 7 and 13 – feasi-
ble regions proffer prospects for predicting the performabil-
ity of multi-processor grids. For example, Figure 13c folds
performability bounds for Harary-Hayes topologies (bloated
latency) alongside performability bounds for Hamming
topologies (K-cubes, with asymptotically best possible
latency approaching the Moore Bound), as well as absolute,
natural limits (red and green curves) on any topology with
commensurate fault tolerance, throughput, and connectivity.

As Figure 9 illustrates, a more thorough treatment would
bracket the performability envelope of quorums, as we ren-
der nodes inoperative, and in quantities from zero on up. At
this fine-grained level of fidelity, Figure 14 compares the
performability of K-cubes with a general lower limit (the
Moore Bound) on latency, as well as with more popular (but
generally suboptimal) C-cubes. The seven applications
described in Sections 1.2 through 2.3 of [34] bolster the case
for compiling these results, along with a host of similar such
results, as a theorem-and-algorithm catalog to the mathemat-
ics of connectivity. Figure 15 illustrates how such a catalog
can (and, we submit, should) be embodied by software that
synthesizes optimum, or near-optimum, topologies. As Fig-
ure 16 depicts, this software also serves as a springboard for
distributed, parallel algorithms for diagnosis and configura-
tion, in turn ported to the operational nodes of a multi-pro-
cessor. Consistent with contemporary trends in experimental
mathematics [16], we have used the same software as an
adjunct for crafting new theorems and algorithms, including
the bulk of those presented in the appendices of [34].
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Figure 14: Feasible regions of performability illuminate how the fractional fault tolerance of Hamming K-cubes bests that of 
traditional C-cubes. For given fault tolerance, moreover, and at minimum count of channels per node, K-cube latency converges 

to the best possible Moore Bound, while C-cube latency diverges from the Moore Bound. Compare with Figures 9 and 13c.

Figure 15: Software enabler for multi-processors by the numbers. Drawing from the mathematics of connectivity, Connection 
Foundry™ synthesizes optimum topologies for grid computing. (Client: NASA / Jet Propulsion Laboratory [25])

Figure 16: Tunable sparse connectivity, by the numbers. As a foundation of power-conserving MANETs, Connection 
Foundry™ invokes Voronoi algorithms from computational geometry [10]. (Client: Department of Homeland Security [21])

See [31] or [34]
for details about

K-cubes, C-cubes, 
radius, diameter,

and the Moore Bound

DESTINATION

Input: Total number of nodes n, 
along with objectives and 

constraints for fault tolerance, 
throughput, latency, and cost

Design-time precursor to 
the formulation of 

distributed, parallel 
synthesis algorithms, 

suitable for embedding as 
part of operational media 

access control (MAC) 
software in the nodes of a 

multi-processor
(cf. Figure 16)

Status — Efforts underway to 
refine software shown to an 

industrial-strength product line

With map

Without map

In a distributed, parallel fashion, 
MANET quorum nodes adaptively 
reconfigure radio-frequency (RF) 

channels, without recourse to a 
central MAC master. Shown here: 
simulated Hamming routing of a 

packet through a minimum power, 
minimum Euclidean spanning tree 

(MEST). The MEST spans a 
topology known as the Delaunay 

triangulation. Compare with 
Figures 1b, 3, and 4
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4. RECAP, UNFINISHED BUSINESS

It makes compelling sense to cast multi-processor design and
operation in terms of feasible regions and objective func-
tions. The precise figures of merit should, we submit, span
but a handful of dimensions stemming from combinations of
i) fault tolerance; ii) throughput; iii) latency; and iv) cost.
Moreover, and as underscored by the seven applications
described in Sections 1.2 through 2.3 of [34], we seek topol-
ogies that constructively achieve optima within feasible
regions of design and operation. A key enabler: software that
synthesizes optimal topologies. As a practical test, we would
benefit from a multi-processor on, say, 128 nodes enabled by
VCSEL channels. Suggested by Figure 1 and described in
[35], such a multi-processor would constitute first serious
delivery to customers of spaceflight grid computing.

ACKNOWLEDGEMENTS

A number of collaborators inspired our informal, example-
and-diagram tutorial; in particular: Erwin Myrick, of the
U.S. Missile Defense Agency; Ross F. Gallo, of The Right
Stuff of Tahoe; and Alan R. Lindsey, formerly with the Air
Force Research Laboratory and now with Austral Engineer-
ing and Software. James D. Meindl, of the Georgia Institute
of Technology, graciously endorsed reprint permission by
the Institute of Electrical and Electronics Engineers (IEEE)
for Figure 5. David Avis, the first author’s doctoral thesis
advisor, continues to champion feasible regions and tech-
niques for optimization. Thank you, one and all!

REFERENCES

[1] L. Alkalai and D. Geer, "Space-Qualified 3D Packag-
ing Approach for Deep Space Missions: New Millennium
Program, Deep Space 1 Micro-Electronics Systems Technol-
ogies". Viewgraph presentation. Pasadena, CA: Jet Propul-
sion Laboratory, 7-Oct-1996. Cited p. 1.
[2] L. Alkalai and A. T. Tai, "Long-life Deep-Space
Applications". Computer. Aug-1998, pp. 37 – 38. Cited p. 1.
[3] S. M. Ardalan, "DrawCraft: A Spacecraft Design Tool
for Integrated Concurrent Engineering". 2000 IEEE Aero-
space Conference. Big Sky, Montana: 18-Mar-2000. Online
at www.ugcs.caltech.edu/~sardalan/. Cited p. 1.
[4] A. Avizienis, "The Hundred Year Spacecraft". Pro-
ceedings, First NASA/DOD Workshop on Evolvable Hard-
ware. Pasadena, CA: Jet Propulsion Laboratory, Jul-1999,
pp. 233 – 239. Cited p. 1.
[5] A. Avizienis, "Toward Systematic Design of Fault-
tolerant Systems". Computer. Apr-1997, pp. 51 – 58.
Cited p. 1.
[6] C. G. Bell, Announcing Local Area VAXcluster Sys-
tems: a New Dimension in Work Group Computing. Digital
Equipment Corporation archive, 1986. Online at
http://research.microsoft.com/~gbell/Digital/timeline/1986-
4.htm. Cited p. 5.
[7] Brainy Quote, Make Everything as Simple as Possi-
ble, But Not Simpler. Albert Einstein Quotes. Online at
www.brainyquote.com/. Cited p. 11.

[8] P. R. Chalasani and K. Thulasiraman, "Parallel Com-
puting for Network Optimization: A Cluster-Based
Approach for the Dual Transshipment Problem". Seventh
IEEE Symposium on Parallel and Dist’d Processing. IEEE
Computer Society, Oct-1995, pp. 66 – 73. Cited pp. 11, 15.
[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms. Cambridge, MA: MIT Press.
Tenth printing, 1993. Cited p. 11.
[10] M. de Berg, M. van Krevald, M. Overmars, and
O. Schwarzkopf, Computational Geometry: Algorithms and
Applications. 2nd edition. Berlin: Springer-Verlag. 2000.
Cited p. 1; Figures 2 and 16.
[11] R. E. Dickerson and I Giess, The Structure and Action
of Proteins. Menlo Park, CA: W. A. Benjamin. 1969. Cited
p. 13.
[12] D. Edenfeld, A. B. Kahng, M. Rogers, and Y. Zorian,
"2003 Technology Roadmap for Semiconductors". Com-
puter. Jan-2004, pp. 47 – 56. Cited p. 1.
[13] M. S. Fadali and L. E. LaForge, "Linear Time Com-
putation of Feasible Regions for Robust Compensators".
International Journal of Robust and Nonlinear Control. 11,
Jun-2001, pp. 819 – 856. Cited Figure 6, p. 13.
[14] J. M. Feldman and C. T. Retter, Computer Architec-
ture: a Designer’s Text Based on Generic RISC. New York:
McGraw-Hill. 1994. Cited p. 5.
[15] M. Friedman, George Joseph Stigler: January 17,
1911 – December 1, 1991. Biographical Memoir, National
Academy of Sciences, National Academies Press, 1998.
Online at www.nap.edu/html/biomems/. Cited p. 7.
[16] J. Horgan, "The Death of Proof". Scientific American.
Oct-1993. pp. 92 – 103. Cited p. 15.
[17] D. S. Katz and R. R. Some, "NASA Advances
Robotic Exploration". Computer. Jan-2003, pp. 52 – 61.
Cited p. 1.
[18] L. J. Kenah, R. E. Goldenberg, and S. F. Bate,
VAX/VMS Internals and Data Structures. 2nd edition. Bed-
ford, MA: Digital Press. 1988. Cited pp. 5, 11.
[19] N. P. Kronenberg, H. M. Levy, and W. D. Strecker,
"VAXcluster: a Closely-coupled Distributed System". ACM
Trans. on Computer Systems. 4 (2), 1986, pp. 130 – 146.
Online via http://portal.acm.org/citation.cfm?id=214421.
Cited pp. 5, 11.
[20] L. E. LaForge, "Hamming Graphs". Proc., 2004 IPSI:
Internet, Processing, Systems for E-education/E-business,
and Interdisciplinaries. 9-Oct-2004. Cited p. 11.
[21] L. E. LaForge, Crypto-Secure Remote Terminal Unit
for New and Retrofit Supervisory Control and Data Acquisi-
tion. Technical report, U.S. Homeland Security contract
NBCHC040088. Reno, NV: The Right Stuff of Tahoe, Incor-
porated. 18-Oct-2004. Cited Figure 16.
[22] L. E. LaForge, Clique-Factorized Optimum MANET
Throughput Enabled by Directed, Power-Controlled Anten-
nas. Technical report, U.S. DoD contract FA8750-04-C-
0020. Reno, NV: The Right Stuff of Tahoe, Incorporated. 14-
Apr-2004 revised 7-Aug-2004. Cited Figure 3, p. 7.
[23] L. E. LaForge, "Self-healing Avionics for Starships".
Proceedings, 2000 IEEE Aerospace Conference. 18-Mar-
2000. Cited pp. 1, 5, 7.
[24] L. E. LaForge, Architectures and Algorithms for Self-
Healing Autonomous Spacecraft. Phase 1 report, NASA
Institute for Advanced Concepts, 9-Jan-2000, revised 28-
Feb-2000. Cited Figure 1, 11.



18

[25] L. E. LaForge, Fault Tolerant Physical Interconnec-
tion of X2000 Computational Avionics. Pasadena, CA: Jet
Propulsion Laboratory, document number JPL D-16485. 28-
Aug-1998, revised 18-Oct-1999. Online at http://fac-
ulty.erau.edu/laforgel/. Cited p. 1, Figure 16.
[26] L. E. LaForge, "Configuration of Locally Spared
Arrays in the Presence of Multiple Fault Types". IEEE
Trans. on Computers. 48 (4), Apr-1999, pp. 398 – 416.
Online at http://faculty.erau.edu/laforgel/. Cited Figure 12.
[27] L. E. LaForge, NASA / ASEE Fellowship, Control and
Autonomy Group, Jet Propulsion Laboratory. 1997 collabo-
ration with Dr. Allen P. Nikora. Includes overview of work
on Deep Space One, NASA probe propelled by an ion
engine. Online at http://faculty.erau.edu/laforgel/Current-
and-Recent-Research/NASA-ASEE/. Cited p. 12.
[28] L. E. LaForge, "What Designers of Wafer Scale Sys-
tems Should Know About Local Sparing". Proc., 1994 IEEE
International Conference on Wafer Scale Integration. R. M.
Lea and S. K. Tewksbury, eds. Los Alamitos: IEEE Com-
puter Society Press, 1994, pp. 106 – 131. Cited p. 13.
[29] L. E. LaForge, Fault Tolerant Arrays. Ph.D. disserta-
tion. Montreal: McGill University, 1991. Cited Figure 11.
[30] L. E. LaForge, K. Huang, and V. K. Agarwal,
"Almost Sure Diagnosis of Almost Every Good Element".
IEEE Trans. Comp. 43 (3), Mar-1994, pp. 295 – 305.
Online at http://faculty.erau.edu/laforgel/. Cited Figure 7.
[31] L. E. LaForge, K. F. Korver, and M. S. Fadali, "What
Designers of Bus Structures and Networks Should Know
About Hypercubes". IEEE Transactions on Computers.
52 (4), Apr-2003, pp. 525 – 544. Online at http://fac-
ulty.erau.edu/laforgel/. Cited Figure 14.
[32] L. E. LaForge and K. F. Korver, "Graph-theoretic
Fault Tolerance for Spacecraft Bus Avionics". Proc., 2000
IEEE Aerospace Conference. 18-Mar-2000. Cited p. 3.
[33] L. E. LaForge and K. F. Korver, "Mutual Test and
Diagnosis: Architectures and Algorithms for Spacecraft Avi-
onics". Proceedings, 2000 IEEE Aerospace Conference. 18-
Mar-2000. Cited p. 13.
[34] L. E. LaForge, J. R. Moreland, and M. S. Fadali,
"Spaceflight Multi-Processors with Fault Tolerance and
Connectivity Tuned from Sparse to Dense". Proceedings,
2006 IEEE Aerospace Conference, 4-Mar-2006.
Cited pp. 1, 3, 5, 7, 9, 11, 13, 15; Figures 1, 3, 7, 8, 9, 11, 13.
[35] L. E. LaForge, J. R. Moreland, R. G. Bryan, and
M. S. Fadali, "Vertical Cavity Surface Emitting Lasers for
Spaceflight Multi-Processors". Proceedings, 2006 IEEE
Aerospace Conf. 4-Mar-2006. Cited pp. 1, 3, 5, 7, 15, 17.
[36] J-C LaPrie, Dependable Computing and Fault-Toler-
ance: Concepts and Terminology. Research Report 84.035
(1984). Laboratoire d'Automatique et d'Analyse des Syste-
mes, Centre National de la Recherche Scientifique, 7, ave-
nue du Colonel Roche, 31077 Toulouse Cedex, France. Also
in Proc. 15th International Symposium on Fault-Tolerant
Computing. June, 1985, pp. 2 – 11. Cited p. 5.
[37] I. Lustig, How George Dantzig Solved The Diet Prob-
lem. Interview with G. B. Dantzig, 2002. Online at www.e-
optimization.com/directory/trailblazers/dantzig/index.cfm.
Cited p. 7.
[38] J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel,
K. P. Martin, and P. A. Kohl, "Interconnect Opportunities for
Gigascale Integration". IBM Journal of Research and Devel-
opment. 46 (2/3), Mar/May-2002, pp. 245 – 263. Cited Fig-
ure 5.

[39] Microsoft Excel 2003, About Solver: Algorithm and
Methods Used by Solver. Online help. Cited p. 11.
[40] E. F. Moore and C. E. Shannon, "Reliable Circuits
Using Less Reliable Relays, Part I". Early, perhaps first, use
of quorum on p. 202. Journal of the Franklin Institute. 262,
Sep-1956, pp. 191 – 208. Cited p. 5.
[41] F. H. Murphy, "Annotated Bibliography on Linear
Programming Models". Interactive Transactions of Opera-
tions Research/ Management Science (ITORMS). 1, 1996.
Online at http://itorms.iris.okstate.edu/. Cited Figure 2, p. 7.
[42] B. T. Murray and J. P. Hayes, "Testing IC’s: Getting
to the Core of the Problem". Computer. Nov-1996, pp. 32 –
38. Cited p. 5.

[43] H. Nabli and B. Sericola, "Performability Analysis: a
New Algorithm". IEEE Transactions on Computers. 45 (4),
Apr-1996, pp. 491 – 494. Cited p. 15.
[44] National Aeronautics and Space Administration,
NASA Independent Verification and Validation Facility.
Online at www.ivv.nasa.gov/index.php. Cited p. 5.
[45] B. Noble, Applied Linear Algebra. Englewood Cliffs,
NJ: Prentice-Hall, 1969. Cited Figure 2, p. 9.
[46] C. H. Papadimitriou and K. Steiglitz, Combinatorial
Optimization: Algorithms and Complexity. Prentice-Hall:
Englewood Cliffs, NJ. 1982. Cited Figure 2.
[47] B. Render and R. M. Stair, Jr., Quantitative Analysis
for Management. Upper Saddle River, NJ: Prentice-Hall,
1997. Cited Figure 2, pp. 7, 9.
[48] T. G. Robertazzi, "Ten Reasons to Use Divisible Load
Theory". Computer. 36 (5), May-2003, pp. 63 – 68. Cited
p. 15.
[49] Y. Shi, Reevaluating Amdahl's Law and Gustafson's
Law. Oct-1996. Online at http://joda.cis.tem-
ple.edu/~shi/docs/amdahl/amdahl.html. Cited p. 15.
[50] R. Simar, Jr., "DSP Architectures, Algorithms and
Code Generation: Fission or Fusion?" Proc., 1997 IEEE
International Conference on Innovative Systems in Silicon.
L. E. LaForge, H. Bolouri, D. Sciutto, and S. K. Tewksbury,
eds. Los Alamitos: IEEE Computer Society Press, 1997,
pp. 220 – 227. Cited p. 5.
[51] W. Stallings, Computer Organization and Architec-
ture: Principles of Structure and Function. 2nd edition. New
York: McGraw-Hill. 1993. Cited pp. 5. 7.
[52] G. J. Stigler, "The Cost of Subsistence". Journal of
Farm Economics. 27, 1945. pp. 303 – 314. Cited p. 7.
[53] United States Missile Defense Agency, "Adapt-
able/Reconfigurable Distributed Spacecraft Processing".
Department of Defense SBIR Topic MDA04-183. Aug-
2004. Online at www.acq.osd.mil/sadbu/sbir/solicita-
tions/sbir044/. Cited p. 3.
[54] United States Navy, "W Band, Real Time Wireless
Network for Avionics Applications". Small Business Inno-
vative Research (SBIR), Department of Defense SBIR Solic-
itation Topic N05-142. 1-Aug-2005. Online at
http://www.dodsbir.net/solicitation/sbir053. Cited p. 3.
[55] P. Zarkesh-Ha and J. D. Meindl, "An Integrated
Architecture for Global Interconnects in a Gigascale System-
on-a-Chip (GSoC)". IEEE Symposium on VLSI Technology,
Digest of Technical Papers. June 2000, pp. 194 – 195. Cited
Figure 5.



19

BIOGRAPHICAL SKETCHES

Laurence E. LaForge (IEEE Member) is President of the
Right Stuff of Tahoe. Previously on faculty with Embry-Rid-
dle Aeronautical University, he twice held NASA/ASEE
Fellowships at the Jet Propulsion Laboratory, where he
worked on bus fault tolerance and the Deep Space 1 probe.
He has been guest editor for the IEEE Transactions on Com-
ponents, Packaging, and Manufacturing Technology, and
program chair for the IEEE International Conference on
Innovative Systems in Silicon. His baccalaureate in mathe-
matics is from the Massachusetts Institute of Technology; his
PhD from McGill University.

James W. G. Turner Holds a BS from the McGill Univer-
sity. His experience encompasses more than 17 years of
developmental, programming, and leadership roles in tech-
nology industries. Most recently, he was communications
consultant to SSTDigital Communications of Seattle. Until
2001, Mr. Turner was Vice President of Sales and Marketing
for LMS Medical Systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


